Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Medical Journal ; (24): 2603-2609, 2012.
Article in English | WPRIM | ID: wpr-283715

ABSTRACT

Chronic kidney disease (CKD) is a major public health problem that affects about 10% of the general population. Current approaches to characterize the category and progression of CKD are normally based on renal histopathological results and clinical parameters. However, this information is not sufficient to predict CKD progression risk reliably or to guide preventive interventions. Nowadays, the appearance of systems biology has brought forward the concepts of "-omics" technologies, including genomics, transcriptomics, proteomics, and metabolomics. Systems biology, together with molecular analysis approaches such as microarray analysis, genome-wide association studies (GWAS), and serial analysis of gene expression (SAGE), has provided the framework for a comprehensive analysis of renal disease and serves as a starting point for generating novel molecular diagnostic tools for use in nephrology. In particular, analysis of urinary mRNA and protein levels is rapidly evolving as a non-invasive approach for CKD monitoring. All these systems biological molecular approaches are required for application of the concept of "personalized medicine" to progressive CKD, which will result in tailoring therapy for each patient, in contrast to the "one-size-fits-all" therapies currently in use.


Subject(s)
Humans , Computational Biology , Gene Expression Profiling , Genome-Wide Association Study , Renal Insufficiency, Chronic , Genetics , Metabolism , Systems Biology , Methods
SELECTION OF CITATIONS
SEARCH DETAIL